mirror of
https://github.com/Toumash/mlflow-docker
synced 2025-11-04 23:29:19 +01:00
updates README.md
This commit is contained in:
148
README.md
148
README.md
@@ -1,117 +1,59 @@
|
|||||||
# mlflow
|
# MFFlow All-In-One PoC
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
* Reference:
|
|
||||||
* official website: https://mlflow.org/
|
|
||||||
* github: https://github.com/mlflow/mlflow
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## Usage
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### Build a Docker image
|
|
||||||
|
|
||||||
```sh
|
|
||||||
git clone https://github.com/jiankaiwang/mlflow-basis.git
|
|
||||||
cd ./mlflow-basis
|
|
||||||
sudo docker build -t mlflow-basis:latest .
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### Run a Container
|
|
||||||
|
|
||||||
```sh
|
|
||||||
# list available docker images
|
|
||||||
sudo docker images
|
|
||||||
|
|
||||||
# list running containers
|
|
||||||
sudo docker ps -a
|
|
||||||
|
|
||||||
# run the container
|
|
||||||
# container port 5000: mlflow server
|
|
||||||
# --rm: remove the container while exiting
|
|
||||||
# -i: interactive
|
|
||||||
# -t: terminal mode
|
|
||||||
# -v: path for host:container
|
|
||||||
#
|
|
||||||
# example: docker run -it --rm --name mlflow -p 5000:5000 mlflow:latest
|
|
||||||
#
|
|
||||||
sudo docker run -it --rm --name mlflow -p 5000:5000 -v <local>:<container> mlflow-basis:latest
|
|
||||||
|
|
||||||
# stop the container
|
|
||||||
sudo docker stop mlflow
|
|
||||||
|
|
||||||
# restart the container
|
|
||||||
sudo docker restart mlflow
|
|
||||||
|
|
||||||
# remove the container
|
|
||||||
sudo docker rm mlflow
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### Interact with Container
|
|
||||||
|
|
||||||
```sh
|
|
||||||
sudo docker exec -it mlflow /bin/bash
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### mlflow Quickstart
|
|
||||||
|
|
||||||
* start the training in mlflow example
|
|
||||||
|
|
||||||
```sh
|
|
||||||
# by default
|
|
||||||
# working dir: /app/mlflow/examples
|
|
||||||
python ./quickstart/mlflow_tracking.py
|
|
||||||
```
|
|
||||||
|
|
||||||
* start the mlflow server to monitor the result
|
|
||||||
|
|
||||||
```sh
|
|
||||||
# host 0.0.0.0: allow all remote access
|
|
||||||
mlflow server --file-store ./mlruns --host 0.0.0.0
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### Push to Dockerhub
|
|
||||||
|
|
||||||
```sh
|
|
||||||
sudo docker login
|
|
||||||
|
|
||||||
# set another tag
|
|
||||||
sudo docker tag mlflow-basis:latest <username_in_dockerhub>/mlflow-basis:<version>
|
|
||||||
|
|
||||||
# push to the dockerhub
|
|
||||||
sudo docker push <username_in_dockerhub>/mlflow-basis:<version>
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
AWS S3 based [on this article ](https://dev.to/goodidea/how-to-fake-aws-locally-with-localstack-27me)
|
AWS S3 based [on this article ](https://dev.to/goodidea/how-to-fake-aws-locally-with-localstack-27me)
|
||||||
|
|
||||||
|
|
||||||
1. [install aws cli](https://aws.amazon.com/cli/)
|
1. [Install AWS cli](https://aws.amazon.com/cli/) **Yes, i know that you dont have an Amazon Web Services Subscription - dont worry! It wont be needed!**
|
||||||
|
2. Configure `.env` file for your choice
|
||||||
|
3. Configure AWS CLI - enter the same credentials from the `.env` file
|
||||||
|
|
||||||
|
```shell
|
||||||
```
|
|
||||||
aws configure
|
aws configure
|
||||||
AWS Access Key ID [****************123]: AKIAIOSFODNN7EXAMPLE
|
|
||||||
AWS Secret Access Key [****************123]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
|
|
||||||
Default region name [us-west-2]: us-east-1
|
|
||||||
Default output format [json]: <ENTER>
|
|
||||||
```
|
```
|
||||||
|
> AWS Access Key ID [****************123]: AKIAIOSFODNN7EXAMPLE
|
||||||
|
> AWS Secret Access Key [****************123]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
|
||||||
|
> Default region name [us-west-2]: us-east-1
|
||||||
|
> Default output format [json]: <ENTER>
|
||||||
|
|
||||||
|
4. Create mlflow bucket
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
npm i
|
npm i
|
||||||
aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow
|
aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow
|
||||||
aws --endpoint-url=http://localhost:9000 s3api put-bucket-acl --bucket mlflow --acl public-read
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
5. Open up http://localhost:5000/#/ for MlFlow, and http://localhost:9000/minio/mlflow/ for S3 bucket (you artifacts) with credentials from `.env` file
|
||||||
|
|
||||||
|
6. Configure S3 Keys.
|
||||||
|
|
||||||
|
For running mlflow files you AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables present on the client-side.
|
||||||
|
|
||||||
|
```shell
|
||||||
|
export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
|
||||||
|
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
|
||||||
|
```
|
||||||
|
|
||||||
|
You can load them from the .env file like so
|
||||||
|
```shell
|
||||||
|
source .env
|
||||||
|
```
|
||||||
|
|
||||||
|
or add them to the .bashrc file and then run
|
||||||
|
|
||||||
|
```shell
|
||||||
|
source ~/.bashrc
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
7. Test the pipeline with below command with conda. If you dont have conda installed run with `--no-conda`
|
||||||
|
|
||||||
|
```shell
|
||||||
|
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000/mlflow MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
|
||||||
|
```
|
||||||
|
|
||||||
|
8. To make the setting permament move the MLFLOW_S3_ENDPOINT_URL and MLFLOW_TRACKING_URI into your .bashrc
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export MLFLOW_S3_ENDPOINT_URL=http://localhost:9000/mlflow
|
||||||
|
export MLFLOW_TRACKING_URI=http://localhost:5000
|
||||||
|
```
|
||||||
|
|||||||
Reference in New Issue
Block a user