mirror of
https://github.com/Toumash/mlflow-docker
synced 2025-11-04 15:19:21 +01:00
Merge pull request #25 from Toumash/pr/simplify-images
feat: simplify images and e2e test so that we know if it works
This commit is contained in:
@@ -28,7 +28,7 @@
|
|||||||
|
|
||||||
1. Configure your client-side
|
1. Configure your client-side
|
||||||
|
|
||||||
For running mlflow files you need various environment variables set on the client side. To generate them user the convienience script `./bashrc_install.sh`, which installs it on your system or `./bashrc_generate.sh`, which just displays the config to copy & paste.
|
For running mlflow files you need various environment variables set on the client side. To generate them use the convienience script `./bashrc_install.sh`, which installs it on your system or `./bashrc_generate.sh`, which just displays the config to copy & paste.
|
||||||
|
|
||||||
> $ ./bashrc_install.sh
|
> $ ./bashrc_install.sh
|
||||||
> [ OK ] Successfully installed environment variables into your .bashrc!
|
> [ OK ] Successfully installed environment variables into your .bashrc!
|
||||||
|
|||||||
@@ -31,12 +31,9 @@ services:
|
|||||||
networks:
|
networks:
|
||||||
- internal
|
- internal
|
||||||
mlflow:
|
mlflow:
|
||||||
|
image: ubuntu/mlflow:2.1.1_1.0-22.04
|
||||||
container_name: tracker_mlflow
|
container_name: tracker_mlflow
|
||||||
image: tracker_ml
|
|
||||||
restart: unless-stopped
|
restart: unless-stopped
|
||||||
build:
|
|
||||||
context: ./mlflow
|
|
||||||
dockerfile: Dockerfile
|
|
||||||
ports:
|
ports:
|
||||||
- "5000:5000"
|
- "5000:5000"
|
||||||
environment:
|
environment:
|
||||||
@@ -70,6 +67,25 @@ services:
|
|||||||
command: tcp db:3306 -t 90s -i 250ms
|
command: tcp db:3306 -t 90s -i 250ms
|
||||||
networks:
|
networks:
|
||||||
- internal
|
- internal
|
||||||
|
run_test_experiment:
|
||||||
|
build:
|
||||||
|
context: ./test_experiment
|
||||||
|
dockerfile: Dockerfile
|
||||||
|
depends_on:
|
||||||
|
- "mlflow"
|
||||||
|
environment:
|
||||||
|
- AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
|
||||||
|
- AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY}
|
||||||
|
- AWS_DEFAULT_REGION=${AWS_REGION}
|
||||||
|
- MLFLOW_S3_ENDPOINT_URL=http://s3:9000
|
||||||
|
- MLFLOW_TRACKING_URI=http://mlflow:5000
|
||||||
|
entrypoint: >
|
||||||
|
/bin/sh -c "
|
||||||
|
python3 mlflow_tracking.py;
|
||||||
|
exit 0;
|
||||||
|
"
|
||||||
|
networks:
|
||||||
|
- internal
|
||||||
networks:
|
networks:
|
||||||
internal:
|
internal:
|
||||||
public:
|
public:
|
||||||
|
|||||||
@@ -1,22 +1,22 @@
|
|||||||
import os
|
import os
|
||||||
from random import random, randint
|
from random import random, randint
|
||||||
|
|
||||||
from mlflow import mlflow,log_metric, log_param, log_artifacts
|
import mlflow
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
with mlflow.start_run() as run:
|
with mlflow.start_run() as run:
|
||||||
mlflow.set_tracking_uri('http://localhost:5000')
|
mlflow.set_tracking_uri('http://localhost:5000')
|
||||||
print("Running mlflow_tracking.py")
|
print("Running mlflow_tracking.py")
|
||||||
|
|
||||||
log_param("param1", randint(0, 100))
|
mlflow.log_param("param1", randint(0, 100))
|
||||||
|
|
||||||
log_metric("foo", random())
|
mlflow.log_metric("foo", random())
|
||||||
log_metric("foo", random() + 1)
|
mlflow.log_metric("foo", random() + 1)
|
||||||
log_metric("foo", random() + 2)
|
mlflow.log_metric("foo", random() + 2)
|
||||||
|
|
||||||
if not os.path.exists("outputs"):
|
if not os.path.exists("outputs"):
|
||||||
os.makedirs("outputs")
|
os.makedirs("outputs")
|
||||||
with open("outputs/test.txt", "w") as f:
|
with open("outputs/test.txt", "w") as f:
|
||||||
f.write("hello world!")
|
f.write("hello world!")
|
||||||
|
|
||||||
log_artifacts("outputs")
|
mlflow.log_artifacts("outputs")
|
||||||
|
|||||||
@@ -1,7 +1,6 @@
|
|||||||
FROM continuumio/miniconda3:latest
|
FROM continuumio/miniconda3:latest
|
||||||
|
|
||||||
RUN pip install mlflow boto3 pymysql
|
RUN pip install mlflow boto3
|
||||||
|
|
||||||
ADD . /app
|
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
|
COPY . .
|
||||||
22
test_experiment/mlflow_tracking.py
Normal file
22
test_experiment/mlflow_tracking.py
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
import os
|
||||||
|
from random import random, randint
|
||||||
|
|
||||||
|
import mlflow
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
with mlflow.start_run() as run:
|
||||||
|
mlflow.set_tracking_uri('http://mlflow:5000')
|
||||||
|
print("Running mlflow_tracking.py")
|
||||||
|
|
||||||
|
mlflow.log_param("param1", randint(0, 100))
|
||||||
|
|
||||||
|
mlflow.log_metric("foo", random())
|
||||||
|
mlflow.log_metric("foo", random() + 1)
|
||||||
|
mlflow.log_metric("foo", random() + 2)
|
||||||
|
|
||||||
|
if not os.path.exists("outputs"):
|
||||||
|
os.makedirs("outputs")
|
||||||
|
with open("outputs/test.txt", "w") as f:
|
||||||
|
f.write("hello world!")
|
||||||
|
|
||||||
|
mlflow.log_artifacts("outputs")
|
||||||
Reference in New Issue
Block a user