From 13f7a52a170d78caa26083d9d9e3eb84735f10ac Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Tomasz=20D=C5=82uski?= Date: Mon, 24 Aug 2020 00:19:41 +0200 Subject: [PATCH] updated README.md --- README.md | 11 ++++------- 1 file changed, 4 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index bd2ea1a..6e84db6 100644 --- a/README.md +++ b/README.md @@ -10,9 +10,8 @@ AWS S3 based [on this article ](https://dev.to/goodidea/how-to-fake-aws-locally- 1. Configure `.env` file for your choice 2. Create mlflow bucket. You can do it either using AWS CLI or Python Api +
**AWS CLI** -AWS CLI -
1. [Install AWS cli](https://aws.amazon.com/cli/) **Yes, i know that you dont have an Amazon Web Services Subscription - dont worry! It wont be needed!** 2. Configure AWS CLI - enter the same credentials from the `.env` file @@ -28,11 +27,10 @@ aws configure ```shell aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow ``` -
-
-Python API -
+
+ +
**Python API** 1. Install Minio ```shell @@ -53,7 +51,6 @@ s3Client.make_bucket('mlflow') ```
-
3. Open up http://localhost:5000/#/ for MlFlow, and http://localhost:9000/minio/mlflow/ for S3 bucket (you artifacts) with credentials from `.env` file