mirror of
https://github.com/Toumash/mlflow-docker
synced 2025-11-04 15:19:21 +01:00
update readme
This commit is contained in:
78
README.md
78
README.md
@@ -15,74 +15,17 @@ The only requirement is docker installed on your system and we are going to use
|
|||||||
- Ready to use bash scripts for python development!
|
- Ready to use bash scripts for python development!
|
||||||
- Automatically-created s3 buckets
|
- Automatically-created s3 buckets
|
||||||
|
|
||||||
|
# 🚀 Setup guide
|
||||||
## Simple setup guide
|
|
||||||
1. Configure `.env` file for your choice. You can put there anything you like, it will be used to configure you services
|
1. Configure `.env` file for your choice. You can put there anything you like, it will be used to configure you services
|
||||||
|
2. Run `docker compose up`
|
||||||
|
3. Open up http://localhost:5000 for MlFlow, and http://localhost:9001/ to browse your files in S3 artifact store
|
||||||
|
|
||||||
2. Run the Infrastructure by this one line:
|
## How to use in ML development in python
|
||||||
```shell
|
|
||||||
$ docker-compose up -d
|
|
||||||
Creating network "mlflow-basis_A" with driver "bridge"
|
|
||||||
Creating mlflow_db ... done
|
|
||||||
Creating tracker_mlflow ... done
|
|
||||||
Creating aws-s3 ... done
|
|
||||||
```
|
|
||||||
|
|
||||||
3. Create mlflow bucket. You can use my bundled script.
|
<details>
|
||||||
|
<summary>Click to show</summary>
|
||||||
|
|
||||||
Just run
|
1. Configure your client-side
|
||||||
```shell
|
|
||||||
bash ./run_create_bucket.sh
|
|
||||||
```
|
|
||||||
|
|
||||||
You can also do it **either using AWS CLI or Python Api**.
|
|
||||||
<details><summary>AWS CLI</summary>
|
|
||||||
|
|
||||||
1. [Install AWS cli](https://aws.amazon.com/cli/) **Yes, i know that you dont have an Amazon Web Services Subscription - dont worry! It wont be needed!**
|
|
||||||
2. Configure AWS CLI - enter the same credentials from the `.env` file
|
|
||||||
|
|
||||||
```shell
|
|
||||||
aws configure
|
|
||||||
```
|
|
||||||
> AWS Access Key ID [****************123]: AKIAIOSFODNN7EXAMPLE
|
|
||||||
> AWS Secret Access Key [****************123]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
|
|
||||||
> Default region name [us-west-2]: us-east-1
|
|
||||||
> Default output format [json]: <ENTER>
|
|
||||||
|
|
||||||
3. Run
|
|
||||||
```shell
|
|
||||||
aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow
|
|
||||||
```
|
|
||||||
|
|
||||||
</details>
|
|
||||||
|
|
||||||
<details><summary>Python API</summary>
|
|
||||||
|
|
||||||
1. Install Minio
|
|
||||||
```shell
|
|
||||||
pip install Minio
|
|
||||||
```
|
|
||||||
2. Run this to create a bucket
|
|
||||||
```python
|
|
||||||
from minio import Minio
|
|
||||||
from minio.error import ResponseError
|
|
||||||
|
|
||||||
s3Client = Minio(
|
|
||||||
'localhost:9000',
|
|
||||||
access_key='<YOUR_AWS_ACCESSS_ID>', # copy from .env file
|
|
||||||
secret_key='<YOUR_AWS_SECRET_ACCESS_KEY>', # copy from .env file
|
|
||||||
secure=False
|
|
||||||
)
|
|
||||||
s3Client.make_bucket('mlflow')
|
|
||||||
```
|
|
||||||
|
|
||||||
</details>
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
4. Open up http://localhost:5000 for MlFlow, and http://localhost:9000/minio/mlflow/ for S3 bucket (you artifacts) with credentials from `.env` file
|
|
||||||
|
|
||||||
5. Configure your client-side
|
|
||||||
|
|
||||||
For running mlflow files you need various environment variables set on the client side. To generate them user the convienience script `./bashrc_install.sh`, which installs it on your system or `./bashrc_generate.sh`, which just displays the config to copy & paste.
|
For running mlflow files you need various environment variables set on the client side. To generate them user the convienience script `./bashrc_install.sh`, which installs it on your system or `./bashrc_generate.sh`, which just displays the config to copy & paste.
|
||||||
|
|
||||||
@@ -91,7 +34,7 @@ For running mlflow files you need various environment variables set on the clien
|
|||||||
|
|
||||||
The script installs this variables: AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, MLFLOW_S3_ENDPOINT_URL, MLFLOW_TRACKING_URI. All of them are needed to use mlflow from the client-side.
|
The script installs this variables: AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, MLFLOW_S3_ENDPOINT_URL, MLFLOW_TRACKING_URI. All of them are needed to use mlflow from the client-side.
|
||||||
|
|
||||||
6. Test the pipeline with below command with conda. If you dont have conda installed run with `--no-conda`
|
2. Test the pipeline with below command with conda. If you dont have conda installed run with `--no-conda`
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
|
mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
|
||||||
@@ -99,12 +42,15 @@ mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
|
|||||||
python ./quickstart/mlflow_tracking.py
|
python ./quickstart/mlflow_tracking.py
|
||||||
```
|
```
|
||||||
|
|
||||||
7. *(Optional)* If you are constantly switching your environment you can use this environment variable syntax
|
3. *(Optional)* If you are constantly switching your environment you can use this environment variable syntax
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
|
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
|
||||||
```
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
|
||||||
## Licensing
|
## Licensing
|
||||||
Copyright (c) 2021 Tomasz Dłuski
|
Copyright (c) 2021 Tomasz Dłuski
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user