diff --git a/README.md b/README.md index c823346..5e0d62a 100644 --- a/README.md +++ b/README.md @@ -47,18 +47,18 @@ source ~/.bashrc 7. Test the pipeline with below command with conda. If you dont have conda installed run with `--no-conda` ```shell -MLFLOW_S3_ENDPOINT_URL=http://localhost:9000/mlflow MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5 +MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5 ``` Optionally you can run ```shell -MLFLOW_S3_ENDPOINT_URL=http://localhost:9000/mlflow MLFLOW_TRACKING_URI=http://localhost:5000 python ./quickstart/mlflow_tracking.py +MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 python ./quickstart/mlflow_tracking.py ``` 8. To make the setting permament move the MLFLOW_S3_ENDPOINT_URL and MLFLOW_TRACKING_URI into your .bashrc ```bash -export MLFLOW_S3_ENDPOINT_URL=http://localhost:9000/mlflow +export MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 export MLFLOW_TRACKING_URI=http://localhost:5000 ``` diff --git a/docker-compose.yml b/docker-compose.yml index a9fd555..97f88cb 100644 --- a/docker-compose.yml +++ b/docker-compose.yml @@ -41,7 +41,7 @@ services: - AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID} - AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY} - AWS_DEFAULT_REGION=${AWS_REGION} - - MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 + - MLFLOW_S3_ENDPOINT_URL=http://s3:9000 networks: - A entrypoint: mlflow server --backend-store-uri mysql+pymysql://${MYSQL_USER}:${MYSQL_PASSWORD}@db:3306/${MYSQL_DATABASE} --default-artifact-root s3://${AWS_BUCKET_NAME}/ -h 0.0.0.0