# mlflow * Reference: * official website: https://mlflow.org/ * github: https://github.com/mlflow/mlflow ## Usage ### Build a Docker image ```sh git clone https://github.com/jiankaiwang/mlflow-basis.git cd ./mlflow-basis sudo docker build -t mlflow-basis:latest . ``` ### Run a Container ```sh # list available docker images sudo docker images # list running containers sudo docker ps -a # run the container # container port 5000: mlflow server # --rm: remove the container while exiting # -i: interactive # -t: terminal mode # -v: path for host:container # # example: docker run -it --rm --name mlflow -p 5000:5000 mlflow:latest # sudo docker run -it --rm --name mlflow -p 5000:5000 -v : mlflow-basis:latest # stop the container sudo docker stop mlflow # restart the container sudo docker restart mlflow # remove the container sudo docker rm mlflow ``` ### Interact with Container ```sh sudo docker exec -it mlflow /bin/bash ``` ### mlflow Quickstart * start the training in mlflow example ```sh # by default # working dir: /app/mlflow/examples python ./quickstart/mlflow_tracking.py ``` * start the mlflow server to monitor the result ```sh # host 0.0.0.0: allow all remote access mlflow server --file-store ./mlruns --host 0.0.0.0 ``` ### Push to Dockerhub ```sh sudo docker login # set another tag sudo docker tag mlflow-basis:latest /mlflow-basis: # push to the dockerhub sudo docker push /mlflow-basis: ``` AWS S3 based [on this article ](https://dev.to/goodidea/how-to-fake-aws-locally-with-localstack-27me) 1. [install aws cli](https://aws.amazon.com/cli/) ``` aws configure AWS Access Key ID [****************123]: AKIAIOSFODNN7EXAMPLE AWS Secret Access Key [****************123]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY Default region name [us-west-2]: us-east-1 Default output format [json]: ``` ```shell npm i aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow aws --endpoint-url=http://localhost:9000 s3api put-bucket-acl --bucket mlflow --acl public-read ```