mirror of
https://github.com/Toumash/mlflow-docker
synced 2025-11-04 15:19:21 +01:00
updated README.md
This commit is contained in:
11
README.md
11
README.md
@@ -10,9 +10,8 @@ AWS S3 based [on this article ](https://dev.to/goodidea/how-to-fake-aws-locally-
|
||||
1. Configure `.env` file for your choice
|
||||
|
||||
2. Create mlflow bucket. You can do it either using AWS CLI or Python Api
|
||||
<details><summary>**AWS CLI**</summary>
|
||||
|
||||
<summary>AWS CLI
|
||||
<details>
|
||||
1. [Install AWS cli](https://aws.amazon.com/cli/) **Yes, i know that you dont have an Amazon Web Services Subscription - dont worry! It wont be needed!**
|
||||
2. Configure AWS CLI - enter the same credentials from the `.env` file
|
||||
|
||||
@@ -28,11 +27,10 @@ aws configure
|
||||
```shell
|
||||
aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow
|
||||
```
|
||||
</details>
|
||||
</summary>
|
||||
|
||||
<summary>Python API
|
||||
<details>
|
||||
</details>
|
||||
|
||||
<details><summary>**Python API**</summary>
|
||||
|
||||
1. Install Minio
|
||||
```shell
|
||||
@@ -53,7 +51,6 @@ s3Client.make_bucket('mlflow')
|
||||
```
|
||||
|
||||
</details>
|
||||
</summary>
|
||||
|
||||
|
||||
3. Open up http://localhost:5000/#/ for MlFlow, and http://localhost:9000/minio/mlflow/ for S3 bucket (you artifacts) with credentials from `.env` file
|
||||
|
||||
Reference in New Issue
Block a user