mirror of
https://github.com/Toumash/mlflow-docker
synced 2025-11-04 15:19:21 +01:00
fully working cli and GUI
This commit is contained in:
@@ -47,18 +47,18 @@ source ~/.bashrc
|
||||
7. Test the pipeline with below command with conda. If you dont have conda installed run with `--no-conda`
|
||||
|
||||
```shell
|
||||
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000/mlflow MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
|
||||
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
|
||||
```
|
||||
|
||||
Optionally you can run
|
||||
```shell
|
||||
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000/mlflow MLFLOW_TRACKING_URI=http://localhost:5000 python ./quickstart/mlflow_tracking.py
|
||||
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 python ./quickstart/mlflow_tracking.py
|
||||
|
||||
```
|
||||
|
||||
8. To make the setting permament move the MLFLOW_S3_ENDPOINT_URL and MLFLOW_TRACKING_URI into your .bashrc
|
||||
|
||||
```bash
|
||||
export MLFLOW_S3_ENDPOINT_URL=http://localhost:9000/mlflow
|
||||
export MLFLOW_S3_ENDPOINT_URL=http://localhost:9000
|
||||
export MLFLOW_TRACKING_URI=http://localhost:5000
|
||||
```
|
||||
|
||||
@@ -41,7 +41,7 @@ services:
|
||||
- AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
|
||||
- AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY}
|
||||
- AWS_DEFAULT_REGION=${AWS_REGION}
|
||||
- MLFLOW_S3_ENDPOINT_URL=http://localhost:9000
|
||||
- MLFLOW_S3_ENDPOINT_URL=http://s3:9000
|
||||
networks:
|
||||
- A
|
||||
entrypoint: mlflow server --backend-store-uri mysql+pymysql://${MYSQL_USER}:${MYSQL_PASSWORD}@db:3306/${MYSQL_DATABASE} --default-artifact-root s3://${AWS_BUCKET_NAME}/ -h 0.0.0.0
|
||||
|
||||
Reference in New Issue
Block a user