mirror of
https://github.com/Toumash/mlflow-docker
synced 2025-11-04 23:29:19 +01:00
Compare commits
1 Commits
1.1
...
feature/10
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6a93c977e4 |
4
.env
4
.env
@@ -1,5 +1,5 @@
|
||||
AWS_ACCESS_KEY_ID=admin
|
||||
AWS_SECRET_ACCESS_KEY=sample_key
|
||||
AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
|
||||
AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
|
||||
AWS_REGION=us-east-1
|
||||
AWS_BUCKET_NAME=mlflow
|
||||
MYSQL_DATABASE=mlflow
|
||||
|
||||
22
Caddyfile
Normal file
22
Caddyfile
Normal file
@@ -0,0 +1,22 @@
|
||||
# Minio Console
|
||||
s3.localhost:9001 {
|
||||
handle_path /* {
|
||||
reverse_proxy s3:9001
|
||||
}
|
||||
}
|
||||
|
||||
# Minio API
|
||||
s3.localhost:9000 {
|
||||
handle_path /* {
|
||||
reverse_proxy s3:9000
|
||||
}
|
||||
}
|
||||
|
||||
mlflow.localhost {
|
||||
basicauth /* {
|
||||
root JDJhJDEwJEVCNmdaNEg2Ti5iejRMYkF3MFZhZ3VtV3E1SzBWZEZ5Q3VWc0tzOEJwZE9TaFlZdEVkZDhX # root hiccup
|
||||
}
|
||||
handle_path /* {
|
||||
reverse_proxy mlflow:5000
|
||||
}
|
||||
}
|
||||
2
LICENSE
2
LICENSE
@@ -1,6 +1,6 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2021 Tomasz Dłuski
|
||||
Copyright (c) 2020 Tomasz Dłuski
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
||||
104
README.md
104
README.md
@@ -1,32 +1,86 @@
|
||||
# MLFlow Docker Setup [](https://github.com/Toumash/mlflow-docker/actions)
|
||||
|
||||
> If you want to boot up mlflow project with one-liner - this repo is for you.
|
||||
> The only requirement is docker installed on your system and we are going to use Bash on linux/windows.
|
||||
If you want to boot up mlflow project with one-liner - this repo is for you.
|
||||
|
||||
# 🚀 1-2-3! Setup guide
|
||||
1. Configure `.env` file for your choice. You can put there anything you like, it will be used to configure you services
|
||||
2. Run `docker compose up`
|
||||
3. Open up http://localhost:5000 for MlFlow, and http://localhost:9001/ to browse your files in S3 artifact store
|
||||
The only requirement is docker installed on your system and we are going to use Bash on linux/windows.
|
||||
|
||||
|
||||
**👇Video tutorial how to set it up on Microsoft Azure 👇**
|
||||
|
||||
[](https://www.youtube.com/watch?v=ma5lA19IJRA)
|
||||
[](https://www.youtube.com/watch?v=ma5lA19IJRA)
|
||||
|
||||
# Features
|
||||
- One file setup (.env)
|
||||
- Minio S3 artifact store with GUI
|
||||
- MySql mlflow storage
|
||||
- Ready to use bash scripts for python development!
|
||||
- Automatically-created s3 buckets
|
||||
- Setup by one file (.env)
|
||||
- Production-ready docker volumes
|
||||
- Separate artifacts and data containers
|
||||
- [Artifacts GUI](https://min.io/)
|
||||
- Ready bash scripts to copy and paste for colleagues to use your server!
|
||||
|
||||
|
||||
## How to use in ML development in python
|
||||
## Simple setup guide
|
||||
1. Configure `.env` file for your choice. You can put there anything you like, it will be used to configure you services
|
||||
|
||||
<details>
|
||||
<summary>Click to show</summary>
|
||||
2. Run the Infrastructure by this one line:
|
||||
```shell
|
||||
$ docker-compose up -d
|
||||
Creating network "mlflow-basis_A" with driver "bridge"
|
||||
Creating mlflow_db ... done
|
||||
Creating tracker_mlflow ... done
|
||||
Creating aws-s3 ... done
|
||||
```
|
||||
|
||||
1. Configure your client-side
|
||||
3. Create mlflow bucket. You can use my bundled script.
|
||||
|
||||
Just run
|
||||
```shell
|
||||
bash ./run_create_bucket.sh
|
||||
```
|
||||
|
||||
You can also do it **either using AWS CLI or Python Api**.
|
||||
<details><summary>AWS CLI</summary>
|
||||
|
||||
1. [Install AWS cli](https://aws.amazon.com/cli/) **Yes, i know that you dont have an Amazon Web Services Subscription - dont worry! It wont be needed!**
|
||||
2. Configure AWS CLI - enter the same credentials from the `.env` file
|
||||
|
||||
```shell
|
||||
aws configure
|
||||
```
|
||||
> AWS Access Key ID [****************123]: AKIAIOSFODNN7EXAMPLE
|
||||
> AWS Secret Access Key [****************123]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
|
||||
> Default region name [us-west-2]: us-east-1
|
||||
> Default output format [json]: <ENTER>
|
||||
|
||||
3. Run
|
||||
```shell
|
||||
aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details><summary>Python API</summary>
|
||||
|
||||
1. Install Minio
|
||||
```shell
|
||||
pip install Minio
|
||||
```
|
||||
2. Run this to create a bucket
|
||||
```python
|
||||
from minio import Minio
|
||||
from minio.error import ResponseError
|
||||
|
||||
s3Client = Minio(
|
||||
'localhost:9000',
|
||||
access_key='<YOUR_AWS_ACCESSS_ID>', # copy from .env file
|
||||
secret_key='<YOUR_AWS_SECRET_ACCESS_KEY>', # copy from .env file
|
||||
secure=False
|
||||
)
|
||||
s3Client.make_bucket('mlflow')
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
---
|
||||
|
||||
4. Open up http://localhost:5000 for MlFlow, and http://localhost:9000/minio/mlflow/ for S3 bucket (you artifacts) with credentials from `.env` file
|
||||
|
||||
5. Configure your client-side
|
||||
|
||||
For running mlflow files you need various environment variables set on the client side. To generate them user the convienience script `./bashrc_install.sh`, which installs it on your system or `./bashrc_generate.sh`, which just displays the config to copy & paste.
|
||||
|
||||
@@ -35,7 +89,7 @@ For running mlflow files you need various environment variables set on the clien
|
||||
|
||||
The script installs this variables: AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, MLFLOW_S3_ENDPOINT_URL, MLFLOW_TRACKING_URI. All of them are needed to use mlflow from the client-side.
|
||||
|
||||
2. Test the pipeline with below command with conda. If you dont have conda installed run with `--no-conda`
|
||||
6. Test the pipeline with below command with conda. If you dont have conda installed run with `--no-conda`
|
||||
|
||||
```shell
|
||||
mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
|
||||
@@ -43,16 +97,8 @@ mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
|
||||
python ./quickstart/mlflow_tracking.py
|
||||
```
|
||||
|
||||
3. *(Optional)* If you are constantly switching your environment you can use this environment variable syntax
|
||||
7. *(Optional)* If you are constantly switching your environment you can use this environment variable syntax
|
||||
|
||||
```shell
|
||||
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
## Licensing
|
||||
Copyright (c) 2021 Tomasz Dłuski
|
||||
|
||||
Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License by reviewing the file [LICENSE](./LICENSE) in the repository.
|
||||
|
||||
@@ -1,69 +1,69 @@
|
||||
version: "3.9"
|
||||
version: '3.2'
|
||||
services:
|
||||
s3:
|
||||
image: minio/minio:RELEASE.2021-11-24T23-19-33Z
|
||||
restart: unless-stopped
|
||||
caddy:
|
||||
image: caddy:2-alpine
|
||||
container_name: caddy
|
||||
volumes:
|
||||
- ./Caddyfile:/etc/caddy/Caddyfile
|
||||
- /caddy/data:/data
|
||||
- /caddy/config:/config
|
||||
ports:
|
||||
- "9000:9000"
|
||||
- "9001:9001"
|
||||
- 80:80
|
||||
- 443:443
|
||||
- 9000:9000
|
||||
- 9001:9001
|
||||
restart: unless-stopped
|
||||
s3:
|
||||
restart: always
|
||||
image: minio/minio:latest
|
||||
container_name: aws-s3
|
||||
ports:
|
||||
- 9000
|
||||
- 9001
|
||||
environment:
|
||||
- MINIO_ROOT_USER=${AWS_ACCESS_KEY_ID}
|
||||
- MINIO_ROOT_PASSWORD=${AWS_SECRET_ACCESS_KEY}
|
||||
command: server /data --console-address ":9001"
|
||||
networks:
|
||||
- internal
|
||||
- public
|
||||
command:
|
||||
server /date --console-address ":9001"
|
||||
volumes:
|
||||
- minio_volume:/data
|
||||
- ./s3:/date
|
||||
networks:
|
||||
- default
|
||||
- proxy-net
|
||||
db:
|
||||
image: mysql/mysql-server:5.7.28
|
||||
restart: unless-stopped
|
||||
container_name: mlflow_db
|
||||
expose:
|
||||
- "3306"
|
||||
environment:
|
||||
- MYSQL_DATABASE=${MYSQL_DATABASE}
|
||||
- MYSQL_USER=${MYSQL_USER}
|
||||
- MYSQL_PASSWORD=${MYSQL_PASSWORD}
|
||||
- MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD}
|
||||
volumes:
|
||||
- db_volume:/var/lib/mysql
|
||||
networks:
|
||||
- internal
|
||||
restart: always
|
||||
image: mysql/mysql-server:5.7.28
|
||||
container_name: mlflow_db
|
||||
expose:
|
||||
- "3306"
|
||||
environment:
|
||||
- MYSQL_DATABASE=${MYSQL_DATABASE}
|
||||
- MYSQL_USER=${MYSQL_USER}
|
||||
- MYSQL_PASSWORD=${MYSQL_PASSWORD}
|
||||
- MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD}
|
||||
volumes:
|
||||
- ./dbdata:/var/lib/mysql
|
||||
networks:
|
||||
- default
|
||||
mlflow:
|
||||
container_name: tracker_mlflow
|
||||
image: tracker_ml
|
||||
restart: unless-stopped
|
||||
build:
|
||||
context: ./mlflow
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- "5000:5000"
|
||||
environment:
|
||||
- AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
|
||||
- AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY}
|
||||
- AWS_DEFAULT_REGION=${AWS_REGION}
|
||||
- MLFLOW_S3_ENDPOINT_URL=http://s3:9000
|
||||
networks:
|
||||
- public
|
||||
- internal
|
||||
entrypoint: bash ./wait-for-it.sh db:3306 -t 90 -- mlflow server --backend-store-uri mysql+pymysql://${MYSQL_USER}:${MYSQL_PASSWORD}@db:3306/${MYSQL_DATABASE} --default-artifact-root s3://${AWS_BUCKET_NAME}/ -h 0.0.0.0
|
||||
create_s3_buckets:
|
||||
image: minio/mc
|
||||
depends_on:
|
||||
- "s3"
|
||||
entrypoint: >
|
||||
/bin/sh -c "
|
||||
until (/usr/bin/mc alias set minio http://s3:9000 '${AWS_ACCESS_KEY_ID}' '${AWS_SECRET_ACCESS_KEY}') do echo '...waiting...' && sleep 1; done;
|
||||
/usr/bin/mc mb minio/mlflow;
|
||||
exit 0;
|
||||
"
|
||||
networks:
|
||||
- internal
|
||||
restart: always
|
||||
container_name: tracker_mlflow
|
||||
image: tracker_ml
|
||||
build:
|
||||
context: ./mlflow
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- "5000:5000"
|
||||
environment:
|
||||
- AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
|
||||
- AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY}
|
||||
- AWS_DEFAULT_REGION=${AWS_REGION}
|
||||
- MLFLOW_S3_ENDPOINT_URL=http://s3:9000
|
||||
entrypoint: mlflow server --backend-store-uri mysql+pymysql://${MYSQL_USER}:${MYSQL_PASSWORD}@db:3306/${MYSQL_DATABASE} --default-artifact-root s3://${AWS_BUCKET_NAME}/ -h 0.0.0.0
|
||||
networks:
|
||||
- proxy-net
|
||||
- default
|
||||
|
||||
networks:
|
||||
internal:
|
||||
public:
|
||||
driver: bridge
|
||||
volumes:
|
||||
db_volume:
|
||||
minio_volume:
|
||||
default:
|
||||
proxy-net:
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
FROM continuumio/miniconda3:latest
|
||||
|
||||
RUN pip install mlflow boto3 pymysql
|
||||
|
||||
ADD . /app
|
||||
WORKDIR /app
|
||||
|
||||
COPY wait-for-it.sh wait-for-it.sh
|
||||
RUN chmod +x wait-for-it.sh
|
||||
|
||||
RUN pip install mlflow boto3 pymysql
|
||||
|
||||
|
||||
@@ -179,4 +179,4 @@ if [[ $WAITFORIT_CLI != "" ]]; then
|
||||
exec "${WAITFORIT_CLI[@]}"
|
||||
else
|
||||
exit $WAITFORIT_RESULT
|
||||
fi
|
||||
fi
|
||||
@@ -5,7 +5,7 @@ from mlflow import mlflow,log_metric, log_param, log_artifacts
|
||||
|
||||
if __name__ == "__main__":
|
||||
with mlflow.start_run() as run:
|
||||
mlflow.set_tracking_uri('http://localhost:5000')
|
||||
mlflow.set_tracking_uri('https://mlflow.localhost')
|
||||
print("Running mlflow_tracking.py")
|
||||
|
||||
log_param("param1", randint(0, 100))
|
||||
|
||||
Reference in New Issue
Block a user