mirror of
https://github.com/Toumash/mlflow-docker
synced 2025-11-04 23:29:19 +01:00
Compare commits
31 Commits
feature/10
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
57be284980 | ||
|
|
723782dc1d | ||
|
|
740bfec7f4 | ||
|
|
6418955ea0 | ||
|
|
3d4b960979 | ||
|
|
068d3347e1 | ||
|
|
bd364c18b8 | ||
|
|
a85c82d09f | ||
|
|
ab927b897e | ||
|
|
120d8146e4 | ||
|
|
e9030c867d | ||
|
|
1e92560fb5 | ||
|
|
289842717b | ||
|
|
ee071564ef | ||
|
|
83e0b0ef12 | ||
|
|
e0e8157b60 | ||
|
|
d6207174f0 | ||
|
|
9300e34d1a | ||
|
|
e3b7595685 | ||
|
|
f37ae1a227 | ||
|
|
b129e9a7cc | ||
|
|
57e981da9a | ||
|
|
b605078792 | ||
|
|
6e798644da | ||
|
|
4c4449110e | ||
|
|
5255f67780 | ||
|
|
8bba55703c | ||
|
|
01e8abe89a | ||
|
|
d0a5dfbde0 | ||
|
|
f92d4ec230 | ||
|
|
2ad2c983db |
4
.env
4
.env
@@ -1,5 +1,5 @@
|
||||
AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
|
||||
AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
|
||||
AWS_ACCESS_KEY_ID=admin
|
||||
AWS_SECRET_ACCESS_KEY=sample_key
|
||||
AWS_REGION=us-east-1
|
||||
AWS_BUCKET_NAME=mlflow
|
||||
MYSQL_DATABASE=mlflow
|
||||
|
||||
2
.github/workflows/verify-docker-compose.yml
vendored
2
.github/workflows/verify-docker-compose.yml
vendored
@@ -4,7 +4,7 @@ jobs:
|
||||
verify:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v4
|
||||
- name: Show the config
|
||||
run: docker-compose config
|
||||
- name: Run
|
||||
|
||||
2
LICENSE
2
LICENSE
@@ -1,6 +1,6 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2020 Tomasz Dłuski
|
||||
Copyright (c) 2021 Tomasz Dłuski
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
||||
106
README.md
106
README.md
@@ -1,95 +1,41 @@
|
||||
# MLFlow Docker Setup [](https://github.com/Toumash/mlflow-docker/actions)
|
||||
|
||||
If you want to boot up mlflow project with one-liner - this repo is for you.
|
||||
> If you want to boot up mlflow project with one-liner - this repo is for you.
|
||||
> The only requirement is docker installed on your system and we are going to use Bash on linux/windows.
|
||||
|
||||
The only requirement is docker installed on your system and we are going to use Bash on linux/windows.
|
||||
# 🚀 1-2-3! Setup guide
|
||||
1. Configure `.env` file for your choice. You can put there anything you like, it will be used to configure you services
|
||||
2. Run `docker compose up`
|
||||
3. Open up http://localhost:5000 for MlFlow, and http://localhost:9001/ to browse your files in S3 artifact store
|
||||
|
||||
[](https://www.youtube.com/watch?v=ma5lA19IJRA)
|
||||
|
||||
**👇Video tutorial how to set it up + BONUS with Microsoft Azure 👇**
|
||||
|
||||
[](https://www.youtube.com/watch?v=ma5lA19IJRA)
|
||||
|
||||
# Features
|
||||
- Setup by one file (.env)
|
||||
- Production-ready docker volumes
|
||||
- Separate artifacts and data containers
|
||||
- [Artifacts GUI](https://min.io/)
|
||||
- Ready bash scripts to copy and paste for colleagues to use your server!
|
||||
- One file setup (.env)
|
||||
- Minio S3 artifact store with GUI
|
||||
- MySql mlflow storage
|
||||
- Ready to use bash scripts for python development!
|
||||
- Automatically-created s3 buckets
|
||||
|
||||
|
||||
## Simple setup guide
|
||||
1. Configure `.env` file for your choice. You can put there anything you like, it will be used to configure you services
|
||||
## How to use in ML development in python
|
||||
|
||||
2. Run the Infrastructure by this one line:
|
||||
```shell
|
||||
$ docker-compose up -d
|
||||
Creating network "mlflow-basis_A" with driver "bridge"
|
||||
Creating mlflow_db ... done
|
||||
Creating tracker_mlflow ... done
|
||||
Creating aws-s3 ... done
|
||||
```
|
||||
<details>
|
||||
<summary>Click to show</summary>
|
||||
|
||||
3. Create mlflow bucket. You can use my bundled script.
|
||||
1. Configure your client-side
|
||||
|
||||
Just run
|
||||
```shell
|
||||
bash ./run_create_bucket.sh
|
||||
```
|
||||
|
||||
You can also do it **either using AWS CLI or Python Api**.
|
||||
<details><summary>AWS CLI</summary>
|
||||
|
||||
1. [Install AWS cli](https://aws.amazon.com/cli/) **Yes, i know that you dont have an Amazon Web Services Subscription - dont worry! It wont be needed!**
|
||||
2. Configure AWS CLI - enter the same credentials from the `.env` file
|
||||
|
||||
```shell
|
||||
aws configure
|
||||
```
|
||||
> AWS Access Key ID [****************123]: AKIAIOSFODNN7EXAMPLE
|
||||
> AWS Secret Access Key [****************123]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
|
||||
> Default region name [us-west-2]: us-east-1
|
||||
> Default output format [json]: <ENTER>
|
||||
|
||||
3. Run
|
||||
```shell
|
||||
aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details><summary>Python API</summary>
|
||||
|
||||
1. Install Minio
|
||||
```shell
|
||||
pip install Minio
|
||||
```
|
||||
2. Run this to create a bucket
|
||||
```python
|
||||
from minio import Minio
|
||||
from minio.error import ResponseError
|
||||
|
||||
s3Client = Minio(
|
||||
'localhost:9000',
|
||||
access_key='<YOUR_AWS_ACCESSS_ID>', # copy from .env file
|
||||
secret_key='<YOUR_AWS_SECRET_ACCESS_KEY>', # copy from .env file
|
||||
secure=False
|
||||
)
|
||||
s3Client.make_bucket('mlflow')
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
---
|
||||
|
||||
4. Open up http://localhost:5000 for MlFlow, and http://localhost:9000/minio/mlflow/ for S3 bucket (you artifacts) with credentials from `.env` file
|
||||
|
||||
5. Configure your client-side
|
||||
|
||||
For running mlflow files you need various environment variables set on the client side. To generate them user the convienience script `./bashrc_install.sh`, which installs it on your system or `./bashrc_generate.sh`, which just displays the config to copy & paste.
|
||||
For running mlflow files you need various environment variables set on the client side. To generate them use the convienience script `./bashrc_install.sh`, which installs it on your system or `./bashrc_generate.sh`, which just displays the config to copy & paste.
|
||||
|
||||
> $ ./bashrc_install.sh
|
||||
> [ OK ] Successfully installed environment variables into your .bashrc!
|
||||
|
||||
The script installs this variables: AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, MLFLOW_S3_ENDPOINT_URL, MLFLOW_TRACKING_URI. All of them are needed to use mlflow from the client-side.
|
||||
|
||||
6. Test the pipeline with below command with conda. If you dont have conda installed run with `--no-conda`
|
||||
2. Test the pipeline with below command with conda. If you dont have conda installed run with `--no-conda`
|
||||
|
||||
```shell
|
||||
mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
|
||||
@@ -97,8 +43,16 @@ mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
|
||||
python ./quickstart/mlflow_tracking.py
|
||||
```
|
||||
|
||||
7. *(Optional)* If you are constantly switching your environment you can use this environment variable syntax
|
||||
3. *(Optional)* If you are constantly switching your environment you can use this environment variable syntax
|
||||
|
||||
```shell
|
||||
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
## Licensing
|
||||
Copyright (c) 2021 Tomasz Dłuski
|
||||
|
||||
Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License by reviewing the file [LICENSE](./LICENSE) in the repository.
|
||||
|
||||
@@ -9,20 +9,20 @@ minioUrl = os.environ.get('MLFLOW_S3_ENDPOINT_URL')
|
||||
bucketName = os.environ.get('AWS_BUCKET_NAME')
|
||||
|
||||
if accessID == None:
|
||||
print('[!] AWS_ACCESS_KEY_ID environemnt variable is empty! run \'source .env\' to load it from the .env file')
|
||||
print('[!] AWS_ACCESS_KEY_ID environment variable is empty! run \'source .env\' to load it from the .env file')
|
||||
exit(1)
|
||||
|
||||
if accessSecret == None:
|
||||
print('[!] AWS_SECRET_ACCESS_KEY environemnt variable is empty! run \'source .env\' to load it from the .env file')
|
||||
print('[!] AWS_SECRET_ACCESS_KEY environment variable is empty! run \'source .env\' to load it from the .env file')
|
||||
exit(1)
|
||||
|
||||
if minioUrl == None:
|
||||
print('[!] MLFLOW_S3_ENDPOINT_URL environemnt variable is empty! run \'source .env\' to load it from the .env file')
|
||||
print('[!] MLFLOW_S3_ENDPOINT_URL environment variable is empty! run \'source .env\' to load it from the .env file')
|
||||
exit(1)
|
||||
|
||||
|
||||
if bucketName == None:
|
||||
print('[!] AWS_BUCKET_NAME environemnt variable is empty! run \'source .env\' to load it from the .env file')
|
||||
print('[!] AWS_BUCKET_NAME environment variable is empty! run \'source .env\' to load it from the .env file')
|
||||
exit(1)
|
||||
|
||||
minioUrlHostWithPort = minioUrl.split('//')[1]
|
||||
|
||||
@@ -1,50 +1,96 @@
|
||||
version: '3.2'
|
||||
version: "3.9"
|
||||
services:
|
||||
s3:
|
||||
image: minio/minio:RELEASE.2021-06-14T01-29-23Z
|
||||
container_name: aws-s3
|
||||
image: minio/minio:RELEASE.2023-11-01T18-37-25Z
|
||||
restart: unless-stopped
|
||||
ports:
|
||||
- 9000:9000
|
||||
- "9000:9000"
|
||||
- "9001:9001"
|
||||
environment:
|
||||
- MINIO_ACCESS_KEY=${AWS_ACCESS_KEY_ID}
|
||||
- MINIO_SECRET_KEY=${AWS_SECRET_ACCESS_KEY}
|
||||
command:
|
||||
server /date
|
||||
- MINIO_ROOT_USER=${AWS_ACCESS_KEY_ID}
|
||||
- MINIO_ROOT_PASSWORD=${AWS_SECRET_ACCESS_KEY}
|
||||
command: server /data --console-address ":9001"
|
||||
networks:
|
||||
- A
|
||||
- internal
|
||||
- public
|
||||
volumes:
|
||||
- ./s3:/date
|
||||
- minio_new_volume:/data
|
||||
db:
|
||||
restart: always
|
||||
image: mysql/mysql-server:5.7.28
|
||||
container_name: mlflow_db
|
||||
expose:
|
||||
- "3306"
|
||||
environment:
|
||||
- MYSQL_DATABASE=${MYSQL_DATABASE}
|
||||
- MYSQL_USER=${MYSQL_USER}
|
||||
- MYSQL_PASSWORD=${MYSQL_PASSWORD}
|
||||
- MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD}
|
||||
volumes:
|
||||
- ./dbdata:/var/lib/mysql
|
||||
networks:
|
||||
- A
|
||||
image: mysql:8-oracle # -oracle tag supports arm64 architecture!
|
||||
restart: unless-stopped
|
||||
container_name: mlflow_db
|
||||
expose:
|
||||
- "3306"
|
||||
environment:
|
||||
- MYSQL_DATABASE=${MYSQL_DATABASE}
|
||||
- MYSQL_USER=${MYSQL_USER}
|
||||
- MYSQL_PASSWORD=${MYSQL_PASSWORD}
|
||||
- MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD}
|
||||
volumes:
|
||||
- db_new_volume:/var/lib/mysql
|
||||
networks:
|
||||
- internal
|
||||
mlflow:
|
||||
container_name: tracker_mlflow
|
||||
image: tracker_ml
|
||||
build:
|
||||
context: ./mlflow
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- "5000:5000"
|
||||
environment:
|
||||
- AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
|
||||
- AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY}
|
||||
- AWS_DEFAULT_REGION=${AWS_REGION}
|
||||
- MLFLOW_S3_ENDPOINT_URL=http://s3:9000
|
||||
networks:
|
||||
- A
|
||||
entrypoint: ./wait-for-it.sh db:3306 -t 90 -- mlflow server --backend-store-uri mysql+pymysql://${MYSQL_USER}:${MYSQL_PASSWORD}@db:3306/${MYSQL_DATABASE} --default-artifact-root s3://${AWS_BUCKET_NAME}/ -h 0.0.0.0
|
||||
image: ubuntu/mlflow:2.1.1_1.0-22.04
|
||||
container_name: tracker_mlflow
|
||||
restart: unless-stopped
|
||||
ports:
|
||||
- "5000:5000"
|
||||
environment:
|
||||
- AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
|
||||
- AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY}
|
||||
- AWS_DEFAULT_REGION=${AWS_REGION}
|
||||
- MLFLOW_S3_ENDPOINT_URL=http://s3:9000
|
||||
networks:
|
||||
- public
|
||||
- internal
|
||||
entrypoint: mlflow server --backend-store-uri mysql+pymysql://${MYSQL_USER}:${MYSQL_PASSWORD}@db:3306/${MYSQL_DATABASE} --default-artifact-root s3://${AWS_BUCKET_NAME}/ --artifacts-destination s3://${AWS_BUCKET_NAME}/ -h 0.0.0.0
|
||||
depends_on:
|
||||
wait-for-db:
|
||||
condition: service_completed_successfully
|
||||
create_s3_buckets:
|
||||
image: minio/mc
|
||||
depends_on:
|
||||
- "s3"
|
||||
entrypoint: >
|
||||
/bin/sh -c "
|
||||
until (/usr/bin/mc alias set minio http://s3:9000 '${AWS_ACCESS_KEY_ID}' '${AWS_SECRET_ACCESS_KEY}') do echo '...waiting...' && sleep 1; done;
|
||||
/usr/bin/mc mb minio/${AWS_BUCKET_NAME};
|
||||
exit 0;
|
||||
"
|
||||
networks:
|
||||
- internal
|
||||
wait-for-db:
|
||||
image: atkrad/wait4x
|
||||
depends_on:
|
||||
- db
|
||||
command: tcp db:3306 -t 90s -i 250ms
|
||||
networks:
|
||||
- internal
|
||||
run_test_experiment:
|
||||
build:
|
||||
context: ./test_experiment
|
||||
dockerfile: Dockerfile
|
||||
platform: linux/amd64 # once continuumio/miniconda3:latest image work on native aarch64 (arm), remove this line
|
||||
depends_on:
|
||||
- "mlflow"
|
||||
environment:
|
||||
- AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
|
||||
- AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY}
|
||||
- AWS_DEFAULT_REGION=${AWS_REGION}
|
||||
- MLFLOW_S3_ENDPOINT_URL=http://s3:9000
|
||||
- MLFLOW_TRACKING_URI=http://mlflow:5000
|
||||
entrypoint: >
|
||||
/bin/sh -c "
|
||||
python3 mlflow_tracking.py;
|
||||
exit 0;
|
||||
"
|
||||
networks:
|
||||
- internal
|
||||
networks:
|
||||
A:
|
||||
driver: bridge
|
||||
internal:
|
||||
public:
|
||||
driver: bridge
|
||||
volumes:
|
||||
db_new_volume:
|
||||
minio_new_volume:
|
||||
|
||||
@@ -1,10 +0,0 @@
|
||||
FROM continuumio/miniconda3:latest
|
||||
|
||||
ADD . /app
|
||||
WORKDIR /app
|
||||
|
||||
COPY wait-for-it.sh wait-for-it.sh
|
||||
RUN chmod +x wait-for-it.sh
|
||||
|
||||
RUN pip install mlflow boto3 pymysql
|
||||
|
||||
@@ -1,182 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
# Use this script to test if a given TCP host/port are available
|
||||
|
||||
WAITFORIT_cmdname=${0##*/}
|
||||
|
||||
echoerr() { if [[ $WAITFORIT_QUIET -ne 1 ]]; then echo "$@" 1>&2; fi }
|
||||
|
||||
usage()
|
||||
{
|
||||
cat << USAGE >&2
|
||||
Usage:
|
||||
$WAITFORIT_cmdname host:port [-s] [-t timeout] [-- command args]
|
||||
-h HOST | --host=HOST Host or IP under test
|
||||
-p PORT | --port=PORT TCP port under test
|
||||
Alternatively, you specify the host and port as host:port
|
||||
-s | --strict Only execute subcommand if the test succeeds
|
||||
-q | --quiet Don't output any status messages
|
||||
-t TIMEOUT | --timeout=TIMEOUT
|
||||
Timeout in seconds, zero for no timeout
|
||||
-- COMMAND ARGS Execute command with args after the test finishes
|
||||
USAGE
|
||||
exit 1
|
||||
}
|
||||
|
||||
wait_for()
|
||||
{
|
||||
if [[ $WAITFORIT_TIMEOUT -gt 0 ]]; then
|
||||
echoerr "$WAITFORIT_cmdname: waiting $WAITFORIT_TIMEOUT seconds for $WAITFORIT_HOST:$WAITFORIT_PORT"
|
||||
else
|
||||
echoerr "$WAITFORIT_cmdname: waiting for $WAITFORIT_HOST:$WAITFORIT_PORT without a timeout"
|
||||
fi
|
||||
WAITFORIT_start_ts=$(date +%s)
|
||||
while :
|
||||
do
|
||||
if [[ $WAITFORIT_ISBUSY -eq 1 ]]; then
|
||||
nc -z $WAITFORIT_HOST $WAITFORIT_PORT
|
||||
WAITFORIT_result=$?
|
||||
else
|
||||
(echo -n > /dev/tcp/$WAITFORIT_HOST/$WAITFORIT_PORT) >/dev/null 2>&1
|
||||
WAITFORIT_result=$?
|
||||
fi
|
||||
if [[ $WAITFORIT_result -eq 0 ]]; then
|
||||
WAITFORIT_end_ts=$(date +%s)
|
||||
echoerr "$WAITFORIT_cmdname: $WAITFORIT_HOST:$WAITFORIT_PORT is available after $((WAITFORIT_end_ts - WAITFORIT_start_ts)) seconds"
|
||||
break
|
||||
fi
|
||||
sleep 1
|
||||
done
|
||||
return $WAITFORIT_result
|
||||
}
|
||||
|
||||
wait_for_wrapper()
|
||||
{
|
||||
# In order to support SIGINT during timeout: http://unix.stackexchange.com/a/57692
|
||||
if [[ $WAITFORIT_QUIET -eq 1 ]]; then
|
||||
timeout $WAITFORIT_BUSYTIMEFLAG $WAITFORIT_TIMEOUT $0 --quiet --child --host=$WAITFORIT_HOST --port=$WAITFORIT_PORT --timeout=$WAITFORIT_TIMEOUT &
|
||||
else
|
||||
timeout $WAITFORIT_BUSYTIMEFLAG $WAITFORIT_TIMEOUT $0 --child --host=$WAITFORIT_HOST --port=$WAITFORIT_PORT --timeout=$WAITFORIT_TIMEOUT &
|
||||
fi
|
||||
WAITFORIT_PID=$!
|
||||
trap "kill -INT -$WAITFORIT_PID" INT
|
||||
wait $WAITFORIT_PID
|
||||
WAITFORIT_RESULT=$?
|
||||
if [[ $WAITFORIT_RESULT -ne 0 ]]; then
|
||||
echoerr "$WAITFORIT_cmdname: timeout occurred after waiting $WAITFORIT_TIMEOUT seconds for $WAITFORIT_HOST:$WAITFORIT_PORT"
|
||||
fi
|
||||
return $WAITFORIT_RESULT
|
||||
}
|
||||
|
||||
# process arguments
|
||||
while [[ $# -gt 0 ]]
|
||||
do
|
||||
case "$1" in
|
||||
*:* )
|
||||
WAITFORIT_hostport=(${1//:/ })
|
||||
WAITFORIT_HOST=${WAITFORIT_hostport[0]}
|
||||
WAITFORIT_PORT=${WAITFORIT_hostport[1]}
|
||||
shift 1
|
||||
;;
|
||||
--child)
|
||||
WAITFORIT_CHILD=1
|
||||
shift 1
|
||||
;;
|
||||
-q | --quiet)
|
||||
WAITFORIT_QUIET=1
|
||||
shift 1
|
||||
;;
|
||||
-s | --strict)
|
||||
WAITFORIT_STRICT=1
|
||||
shift 1
|
||||
;;
|
||||
-h)
|
||||
WAITFORIT_HOST="$2"
|
||||
if [[ $WAITFORIT_HOST == "" ]]; then break; fi
|
||||
shift 2
|
||||
;;
|
||||
--host=*)
|
||||
WAITFORIT_HOST="${1#*=}"
|
||||
shift 1
|
||||
;;
|
||||
-p)
|
||||
WAITFORIT_PORT="$2"
|
||||
if [[ $WAITFORIT_PORT == "" ]]; then break; fi
|
||||
shift 2
|
||||
;;
|
||||
--port=*)
|
||||
WAITFORIT_PORT="${1#*=}"
|
||||
shift 1
|
||||
;;
|
||||
-t)
|
||||
WAITFORIT_TIMEOUT="$2"
|
||||
if [[ $WAITFORIT_TIMEOUT == "" ]]; then break; fi
|
||||
shift 2
|
||||
;;
|
||||
--timeout=*)
|
||||
WAITFORIT_TIMEOUT="${1#*=}"
|
||||
shift 1
|
||||
;;
|
||||
--)
|
||||
shift
|
||||
WAITFORIT_CLI=("$@")
|
||||
break
|
||||
;;
|
||||
--help)
|
||||
usage
|
||||
;;
|
||||
*)
|
||||
echoerr "Unknown argument: $1"
|
||||
usage
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
if [[ "$WAITFORIT_HOST" == "" || "$WAITFORIT_PORT" == "" ]]; then
|
||||
echoerr "Error: you need to provide a host and port to test."
|
||||
usage
|
||||
fi
|
||||
|
||||
WAITFORIT_TIMEOUT=${WAITFORIT_TIMEOUT:-15}
|
||||
WAITFORIT_STRICT=${WAITFORIT_STRICT:-0}
|
||||
WAITFORIT_CHILD=${WAITFORIT_CHILD:-0}
|
||||
WAITFORIT_QUIET=${WAITFORIT_QUIET:-0}
|
||||
|
||||
# Check to see if timeout is from busybox?
|
||||
WAITFORIT_TIMEOUT_PATH=$(type -p timeout)
|
||||
WAITFORIT_TIMEOUT_PATH=$(realpath $WAITFORIT_TIMEOUT_PATH 2>/dev/null || readlink -f $WAITFORIT_TIMEOUT_PATH)
|
||||
|
||||
WAITFORIT_BUSYTIMEFLAG=""
|
||||
if [[ $WAITFORIT_TIMEOUT_PATH =~ "busybox" ]]; then
|
||||
WAITFORIT_ISBUSY=1
|
||||
# Check if busybox timeout uses -t flag
|
||||
# (recent Alpine versions don't support -t anymore)
|
||||
if timeout &>/dev/stdout | grep -q -e '-t '; then
|
||||
WAITFORIT_BUSYTIMEFLAG="-t"
|
||||
fi
|
||||
else
|
||||
WAITFORIT_ISBUSY=0
|
||||
fi
|
||||
|
||||
if [[ $WAITFORIT_CHILD -gt 0 ]]; then
|
||||
wait_for
|
||||
WAITFORIT_RESULT=$?
|
||||
exit $WAITFORIT_RESULT
|
||||
else
|
||||
if [[ $WAITFORIT_TIMEOUT -gt 0 ]]; then
|
||||
wait_for_wrapper
|
||||
WAITFORIT_RESULT=$?
|
||||
else
|
||||
wait_for
|
||||
WAITFORIT_RESULT=$?
|
||||
fi
|
||||
fi
|
||||
|
||||
if [[ $WAITFORIT_CLI != "" ]]; then
|
||||
if [[ $WAITFORIT_RESULT -ne 0 && $WAITFORIT_STRICT -eq 1 ]]; then
|
||||
echoerr "$WAITFORIT_cmdname: strict mode, refusing to execute subprocess"
|
||||
exit $WAITFORIT_RESULT
|
||||
fi
|
||||
exec "${WAITFORIT_CLI[@]}"
|
||||
else
|
||||
exit $WAITFORIT_RESULT
|
||||
fi
|
||||
@@ -1,22 +1,22 @@
|
||||
import os
|
||||
from random import random, randint
|
||||
|
||||
from mlflow import mlflow,log_metric, log_param, log_artifacts
|
||||
import mlflow
|
||||
|
||||
if __name__ == "__main__":
|
||||
with mlflow.start_run() as run:
|
||||
mlflow.set_tracking_uri('http://localhost:5000')
|
||||
print("Running mlflow_tracking.py")
|
||||
|
||||
log_param("param1", randint(0, 100))
|
||||
mlflow.log_param("param1", randint(0, 100))
|
||||
|
||||
log_metric("foo", random())
|
||||
log_metric("foo", random() + 1)
|
||||
log_metric("foo", random() + 2)
|
||||
mlflow.log_metric("foo", random())
|
||||
mlflow.log_metric("foo", random() + 1)
|
||||
mlflow.log_metric("foo", random() + 2)
|
||||
|
||||
if not os.path.exists("outputs"):
|
||||
os.makedirs("outputs")
|
||||
with open("outputs/test.txt", "w") as f:
|
||||
f.write("hello world!")
|
||||
|
||||
log_artifacts("outputs")
|
||||
mlflow.log_artifacts("outputs")
|
||||
|
||||
6
test_experiment/Dockerfile
Normal file
6
test_experiment/Dockerfile
Normal file
@@ -0,0 +1,6 @@
|
||||
FROM continuumio/miniconda3:latest
|
||||
|
||||
RUN pip install mlflow boto3
|
||||
|
||||
WORKDIR /app
|
||||
COPY . .
|
||||
22
test_experiment/mlflow_tracking.py
Normal file
22
test_experiment/mlflow_tracking.py
Normal file
@@ -0,0 +1,22 @@
|
||||
import os
|
||||
from random import random, randint
|
||||
|
||||
import mlflow
|
||||
|
||||
if __name__ == "__main__":
|
||||
with mlflow.start_run() as run:
|
||||
mlflow.set_tracking_uri('http://mlflow:5000')
|
||||
print("Running mlflow_tracking.py")
|
||||
|
||||
mlflow.log_param("param1", randint(0, 100))
|
||||
|
||||
mlflow.log_metric("foo", random())
|
||||
mlflow.log_metric("foo", random() + 1)
|
||||
mlflow.log_metric("foo", random() + 2)
|
||||
|
||||
if not os.path.exists("outputs"):
|
||||
os.makedirs("outputs")
|
||||
with open("outputs/test.txt", "w") as f:
|
||||
f.write("hello world!")
|
||||
|
||||
mlflow.log_artifacts("outputs")
|
||||
Reference in New Issue
Block a user