mirror of
https://github.com/Toumash/mlflow-docker
synced 2025-11-04 15:19:21 +01:00
Compare commits
13 Commits
Toumash/is
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
57be284980 | ||
|
|
723782dc1d | ||
|
|
740bfec7f4 | ||
|
|
6418955ea0 | ||
|
|
3d4b960979 | ||
|
|
068d3347e1 | ||
|
|
bd364c18b8 | ||
|
|
a85c82d09f | ||
|
|
ab927b897e | ||
|
|
120d8146e4 | ||
|
|
e9030c867d | ||
|
|
1e92560fb5 | ||
|
|
289842717b |
2
.github/workflows/verify-docker-compose.yml
vendored
2
.github/workflows/verify-docker-compose.yml
vendored
@@ -4,7 +4,7 @@ jobs:
|
||||
verify:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v4
|
||||
- name: Show the config
|
||||
run: docker-compose config
|
||||
- name: Run
|
||||
|
||||
@@ -28,7 +28,7 @@
|
||||
|
||||
1. Configure your client-side
|
||||
|
||||
For running mlflow files you need various environment variables set on the client side. To generate them user the convienience script `./bashrc_install.sh`, which installs it on your system or `./bashrc_generate.sh`, which just displays the config to copy & paste.
|
||||
For running mlflow files you need various environment variables set on the client side. To generate them use the convienience script `./bashrc_install.sh`, which installs it on your system or `./bashrc_generate.sh`, which just displays the config to copy & paste.
|
||||
|
||||
> $ ./bashrc_install.sh
|
||||
> [ OK ] Successfully installed environment variables into your .bashrc!
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
version: "3.9"
|
||||
services:
|
||||
s3:
|
||||
image: minio/minio:RELEASE.2021-11-24T23-19-33Z
|
||||
image: minio/minio:RELEASE.2023-11-01T18-37-25Z
|
||||
restart: unless-stopped
|
||||
ports:
|
||||
- "9000:9000"
|
||||
@@ -14,9 +14,9 @@ services:
|
||||
- internal
|
||||
- public
|
||||
volumes:
|
||||
- minio_volume:/data
|
||||
- minio_new_volume:/data
|
||||
db:
|
||||
image: mysql/mysql-server:5.7.28
|
||||
image: mysql:8-oracle # -oracle tag supports arm64 architecture!
|
||||
restart: unless-stopped
|
||||
container_name: mlflow_db
|
||||
expose:
|
||||
@@ -27,16 +27,13 @@ services:
|
||||
- MYSQL_PASSWORD=${MYSQL_PASSWORD}
|
||||
- MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD}
|
||||
volumes:
|
||||
- db_volume:/var/lib/mysql
|
||||
- db_new_volume:/var/lib/mysql
|
||||
networks:
|
||||
- internal
|
||||
mlflow:
|
||||
image: ubuntu/mlflow:2.1.1_1.0-22.04
|
||||
container_name: tracker_mlflow
|
||||
image: tracker_ml
|
||||
restart: unless-stopped
|
||||
build:
|
||||
context: ./mlflow
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- "5000:5000"
|
||||
environment:
|
||||
@@ -70,10 +67,30 @@ services:
|
||||
command: tcp db:3306 -t 90s -i 250ms
|
||||
networks:
|
||||
- internal
|
||||
run_test_experiment:
|
||||
build:
|
||||
context: ./test_experiment
|
||||
dockerfile: Dockerfile
|
||||
platform: linux/amd64 # once continuumio/miniconda3:latest image work on native aarch64 (arm), remove this line
|
||||
depends_on:
|
||||
- "mlflow"
|
||||
environment:
|
||||
- AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
|
||||
- AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY}
|
||||
- AWS_DEFAULT_REGION=${AWS_REGION}
|
||||
- MLFLOW_S3_ENDPOINT_URL=http://s3:9000
|
||||
- MLFLOW_TRACKING_URI=http://mlflow:5000
|
||||
entrypoint: >
|
||||
/bin/sh -c "
|
||||
python3 mlflow_tracking.py;
|
||||
exit 0;
|
||||
"
|
||||
networks:
|
||||
- internal
|
||||
networks:
|
||||
internal:
|
||||
public:
|
||||
driver: bridge
|
||||
volumes:
|
||||
db_volume:
|
||||
minio_volume:
|
||||
db_new_volume:
|
||||
minio_new_volume:
|
||||
|
||||
@@ -1,22 +1,22 @@
|
||||
import os
|
||||
from random import random, randint
|
||||
|
||||
from mlflow import mlflow,log_metric, log_param, log_artifacts
|
||||
import mlflow
|
||||
|
||||
if __name__ == "__main__":
|
||||
with mlflow.start_run() as run:
|
||||
mlflow.set_tracking_uri('http://localhost:5000')
|
||||
print("Running mlflow_tracking.py")
|
||||
|
||||
log_param("param1", randint(0, 100))
|
||||
mlflow.log_param("param1", randint(0, 100))
|
||||
|
||||
log_metric("foo", random())
|
||||
log_metric("foo", random() + 1)
|
||||
log_metric("foo", random() + 2)
|
||||
mlflow.log_metric("foo", random())
|
||||
mlflow.log_metric("foo", random() + 1)
|
||||
mlflow.log_metric("foo", random() + 2)
|
||||
|
||||
if not os.path.exists("outputs"):
|
||||
os.makedirs("outputs")
|
||||
with open("outputs/test.txt", "w") as f:
|
||||
f.write("hello world!")
|
||||
|
||||
log_artifacts("outputs")
|
||||
mlflow.log_artifacts("outputs")
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
FROM continuumio/miniconda3:latest
|
||||
|
||||
RUN pip install mlflow boto3 pymysql
|
||||
RUN pip install mlflow boto3
|
||||
|
||||
ADD . /app
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
22
test_experiment/mlflow_tracking.py
Normal file
22
test_experiment/mlflow_tracking.py
Normal file
@@ -0,0 +1,22 @@
|
||||
import os
|
||||
from random import random, randint
|
||||
|
||||
import mlflow
|
||||
|
||||
if __name__ == "__main__":
|
||||
with mlflow.start_run() as run:
|
||||
mlflow.set_tracking_uri('http://mlflow:5000')
|
||||
print("Running mlflow_tracking.py")
|
||||
|
||||
mlflow.log_param("param1", randint(0, 100))
|
||||
|
||||
mlflow.log_metric("foo", random())
|
||||
mlflow.log_metric("foo", random() + 1)
|
||||
mlflow.log_metric("foo", random() + 2)
|
||||
|
||||
if not os.path.exists("outputs"):
|
||||
os.makedirs("outputs")
|
||||
with open("outputs/test.txt", "w") as f:
|
||||
f.write("hello world!")
|
||||
|
||||
mlflow.log_artifacts("outputs")
|
||||
Reference in New Issue
Block a user