Tomasz Dłuski 34521a4aed Update README.md
2020-08-24 00:04:53 +02:00
2020-08-23 14:48:38 +02:00
2020-08-23 22:28:42 +02:00
2020-08-24 00:02:55 +02:00
2020-08-24 00:04:53 +02:00

MLFlow

If you want to boot up mlflow project with one-liner - this repo is for you.

The only requirement is docker installed on your system

AWS S3 based on this article

  1. Install AWS cli Yes, i know that you dont have an Amazon Web Services Subscription - dont worry! It wont be needed!
  2. Configure .env file for your choice
  3. Configure AWS CLI - enter the same credentials from the .env file
aws configure

AWS Access Key ID [****************123]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [****************123]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [us-west-2]: us-east-1
Default output format [json]:

  1. Create mlflow bucket
aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow
  1. Open up http://localhost:5000/#/ for MlFlow, and http://localhost:9000/minio/mlflow/ for S3 bucket (you artifacts) with credentials from .env file

  2. Configure S3 Keys.

For running mlflow files you AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables present on the client-side.

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

You can load them from the .env file like so

source .env

or add them to the .bashrc file and then run

source ~/.bashrc
  1. Test the pipeline with below command with conda. If you dont have conda installed run with --no-conda
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5

Optionally you can run

MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 python ./quickstart/mlflow_tracking.py

  1. To make the setting permament move the MLFLOW_S3_ENDPOINT_URL and MLFLOW_TRACKING_URI into your .bashrc
export MLFLOW_S3_ENDPOINT_URL=http://localhost:9000
export MLFLOW_TRACKING_URI=http://localhost:5000
Description
No description provided
Readme MIT 659 KiB
Languages
Python 69.9%
Shell 27.5%
Dockerfile 2.6%