Files
mlflow-docker-minio/README.md
Tomasz Dłuski 5ca6cf8aff Update README.md
2020-08-24 09:25:08 +02:00

127 lines
3.9 KiB
Markdown

# MLFlow Docker Setup [![Actions Status](https://github.com/Toumash/mlflow-docker/workflows/VerifyDockerCompose/badge.svg)](https://github.com/Toumash/mlflow-docker/actions)
If you want to boot up mlflow project with one-liner - this repo is for you.
The only requirement is docker installed on your system and we are going to use Bash on linux/windows.
## Step by step guide
1. Configure `.env` file for your choice. You can put there anything you like, it will be used for our services configuration
2. Run the Infrastructure by this one line:
```shell
$ docker-compose up -d
Creating network "mlflow-basis_A" with driver "bridge"
Creating mlflow_db ... done
Creating tracker_mlflow ... done
Creating aws-s3 ... done
```
Your mlflow_db is slowly getting ready - it migh take up to 1 minute. To be sure, that all of the services are running fine, just run docker-compose up -d until you see all services `up-to-date`
> $ docker-compose up -d
> mlflow_db is up-to-date
> aws-s3 is up-to-date
> tracker_mlflow is up-to-date
3. Create mlflow bucket. You can do it **either using AWS CLI or Python Api**. **You dont need an AWS subscription**
<details><summary>AWS CLI</summary>
1. [Install AWS cli](https://aws.amazon.com/cli/) **Yes, i know that you dont have an Amazon Web Services Subscription - dont worry! It wont be needed!**
2. Configure AWS CLI - enter the same credentials from the `.env` file
```shell
aws configure
```
> AWS Access Key ID [****************123]: AKIAIOSFODNN7EXAMPLE
> AWS Secret Access Key [****************123]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
> Default region name [us-west-2]: us-east-1
> Default output format [json]: <ENTER>
3. Run
```shell
aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow
```
</details>
<details><summary>Python API</summary>
1. Install Minio
```shell
pip install Minio
```
2. Run this to create a bucket
```python
from minio import Minio
from minio.error import ResponseError
s3Client = Minio(
'localhost:9000',
access_key='AKIAIOSFODNN7EXAMPLE', # copy from .env file
secret_key='wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY', # copy from .env file
secure=False
)
s3Client.make_bucket('mlflow')
```
</details>
---
4. Open up http://localhost:5000/#/ for MlFlow, and http://localhost:9000/minio/mlflow/ for S3 bucket (you artifacts) with credentials from `.env` file
5. Configure your client-side
For running mlflow files you AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables present on the client-side.
Also, you will need to specify the address of your S3 server (minio) and mlflow tracking server
```shell
export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export MLFLOW_S3_ENDPOINT_URL=http://localhost:9000
export MLFLOW_TRACKING_URI=http://localhost:5000
```
You can load them from the .env file. Create a `.env` file inside this repo folder and paste:
```
AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
AWS_REGION=us-east-1
AWS_BUCKET_NAME=mlflow
MYSQL_DATABASE=mlflow
MYSQL_USER=mlflow_user
MYSQL_PASSWORD=mlflow_password
MYSQL_ROOT_PASSWORD=toor
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000
MLFLOW_TRACKING_URI=http://localhost:5000
```
Then run
```shell
source .env
```
or add them as `export X=Y` to the .bashrc file and then run
```shell
source ~/.bashrc
```
6. Test the pipeline with below command with conda. If you dont have conda installed run with `--no-conda`
```shell
mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
```
Optionally you can run
```shell
python ./quickstart/mlflow_tracking.py
```
7. (Optional) If you are constantly switching your environment you can use this environment variable syntax
```shell
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
```