MLFlow Docker Setup 
If you want to boot up mlflow project with one-liner - this repo is for you.
The only requirement is docker installed on your system and we are going to use Bash on linux/windows.
Step by step guide
-
Configure
.envfile for your choice -
Create mlflow bucket. You can do it either using AWS CLI or Python Api
AWS CLI
- Install AWS cli Yes, i know that you dont have an Amazon Web Services Subscription - dont worry! It wont be needed!
- Configure AWS CLI - enter the same credentials from the
.envfile
aws configure
AWS Access Key ID [****************123]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [****************123]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [us-west-2]: us-east-1
Default output format [json]:
- Run
aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow
Python API
- Install Minio
pip install Minio
- Run this to create a bucket
from minio import Minio
from minio.error import ResponseError
s3Client = Minio(
'localhost:9000',
access_key='AKIAIOSFODNN7EXAMPLE', # copy from .env file
secret_key='wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY', # copy from .env file
secure=False
)
s3Client.make_bucket('mlflow')
-
Open up http://localhost:5000/#/ for MlFlow, and http://localhost:9000/minio/mlflow/ for S3 bucket (you artifacts) with credentials from
.envfile -
Configure your client-side
For running mlflow files you AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables present on the client-side.
Also, you will need to specify the address of your S3 server (minio) and mlflow tracking server
export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export MLFLOW_S3_ENDPOINT_URL=http://localhost:9000
export MLFLOW_TRACKING_URI=http://localhost:5000
You can load them from the .env file. Create a .env file inside this repo folder and paste:
AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
AWS_REGION=us-east-1
AWS_BUCKET_NAME=mlflow
MYSQL_DATABASE=mlflow
MYSQL_USER=mlflow_user
MYSQL_PASSWORD=mlflow_password
MYSQL_ROOT_PASSWORD=toor
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000
MLFLOW_TRACKING_URI=http://localhost:5000
Then run
source .env
or add them as export X=Y to the .bashrc file and then run
source ~/.bashrc
- Test the pipeline with below command with conda. If you dont have conda installed run with
--no-conda
mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
Optionally you can run
python ./quickstart/mlflow_tracking.py
- (Optional) If you are constantly switching your environment you can use this environment variable syntax
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5