mirror of
https://github.com/Toumash/mlflow-docker
synced 2025-11-04 15:19:21 +01:00
93b8b90207bc0a0b47288e96cef4d161abfed1eb
mlflow
- Reference:
- official website: https://mlflow.org/
- github: https://github.com/mlflow/mlflow
Usage
Build a Docker image
git clone https://github.com/jiankaiwang/mlflow-basis.git
cd ./mlflow-basis
sudo docker build -t mlflow-basis:latest .
Run a Container
# list available docker images
sudo docker images
# list running containers
sudo docker ps -a
# run the container
# container port 5000: mlflow server
# --rm: remove the container while exiting
# -i: interactive
# -t: terminal mode
# -v: path for host:container
#
# example: docker run -it --rm --name mlflow -p 5000:5000 mlflow:latest
#
sudo docker run -it --rm --name mlflow -p 5000:5000 -v <local>:<container> mlflow-basis:latest
# stop the container
sudo docker stop mlflow
# restart the container
sudo docker restart mlflow
# remove the container
sudo docker rm mlflow
Interact with Container
sudo docker exec -it mlflow /bin/bash
mlflow Quickstart
- start the training in mlflow example
# by default
# working dir: /app/mlflow/examples
python ./quickstart/mlflow_tracking.py
- start the mlflow server to monitor the result
# host 0.0.0.0: allow all remote access
mlflow server --file-store ./mlruns --host 0.0.0.0
Push to Dockerhub
sudo docker login
# set another tag
sudo docker tag mlflow-basis:latest <username_in_dockerhub>/mlflow-basis:<version>
# push to the dockerhub
sudo docker push <username_in_dockerhub>/mlflow-basis:<version>
AWS S3 based on this article
aws configure
AWS Access Key ID [****************123]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [****************123]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [us-west-2]: us-east-1
Default output format [json]: <ENTER>
npm i
aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow
aws --endpoint-url=http://localhost:9000 s3api put-bucket-acl --bucket mlflow --acl public-read
Languages
Python
69.9%
Shell
27.5%
Dockerfile
2.6%