Tomasz Dłuski c56c0fd2f0 adds aws demo
2020-08-23 22:28:42 +02:00
2020-08-23 22:28:42 +02:00
2020-08-23 14:48:38 +02:00
2020-08-23 14:48:38 +02:00
2020-08-23 22:28:42 +02:00
2020-08-23 22:28:42 +02:00
2020-08-23 22:28:42 +02:00
2020-08-23 22:28:42 +02:00
2020-08-23 22:28:42 +02:00
2020-08-23 22:28:42 +02:00
2020-08-23 22:28:42 +02:00
2020-08-23 22:28:42 +02:00

mlflow

Usage

Build a Docker image

git clone https://github.com/jiankaiwang/mlflow-basis.git
cd ./mlflow-basis
sudo docker build -t mlflow-basis:latest .

Run a Container

# list available docker images
sudo docker images

# list running containers
sudo docker ps -a

# run the container
# container port 5000: mlflow server
# --rm: remove the container while exiting
# -i: interactive
# -t: terminal mode
# -v: path for host:container
#
# example: docker run -it --rm --name mlflow -p 5000:5000 mlflow:latest
#
sudo docker run -it --rm --name mlflow -p 5000:5000 -v <local>:<container> mlflow-basis:latest

# stop the container
sudo docker stop mlflow

# restart the container
sudo docker restart mlflow

# remove the container
sudo docker rm mlflow

Interact with Container

sudo docker exec -it mlflow /bin/bash

mlflow Quickstart

  • start the training in mlflow example
# by default
# working dir: /app/mlflow/examples
python ./quickstart/mlflow_tracking.py
  • start the mlflow server to monitor the result
# host 0.0.0.0: allow all remote access
mlflow server --file-store ./mlruns --host 0.0.0.0

Push to Dockerhub

sudo docker login

# set another tag
sudo docker tag mlflow-basis:latest <username_in_dockerhub>/mlflow-basis:<version>

# push to the dockerhub
sudo docker push <username_in_dockerhub>/mlflow-basis:<version>

AWS S3 based on this article

  1. install aws cli
aws configure
AWS Access Key ID [****************123]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [****************123]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [us-west-2]: us-east-1
Default output format [json]: <ENTER>
npm i
aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow
aws --endpoint-url=http://localhost:9000 s3api put-bucket-acl --bucket mlflow --acl public-read
Description
No description provided
Readme MIT 659 KiB
Languages
Python 69.9%
Shell 27.5%
Dockerfile 2.6%