mirror of
				https://github.com/Toumash/mlflow-docker
				synced 2025-11-04 07:09:22 +01:00 
			
		
		
		
	Update README.md
This commit is contained in:
		
							
								
								
									
										37
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										37
									
								
								README.md
									
									
									
									
									
								
							@@ -59,16 +59,15 @@ s3Client.make_bucket('mlflow')
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
4. Open up http://localhost:5000/#/ for MlFlow, and http://localhost:9000/minio/mlflow/ for S3 bucket (you artifacts) with credentials from `.env` file
 | 
			
		||||
4. Open up http://localhost:5000 for MlFlow, and http://localhost:9000/minio/mlflow/ for S3 bucket (you artifacts) with credentials from `.env` file
 | 
			
		||||
 | 
			
		||||
5. Configure your client-side
 | 
			
		||||
 | 
			
		||||
For running mlflow files you AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables present on the client-side.
 | 
			
		||||
 | 
			
		||||
Also, you will need to specify the address of your S3 server (minio) and mlflow tracking server
 | 
			
		||||
Also, you will need to specify the address of your S3 server (minio) and mlflow tracking server. For that, run following script
 | 
			
		||||
 | 
			
		||||
```shell
 | 
			
		||||
export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
 | 
			
		||||
@@ -77,43 +76,17 @@ export MLFLOW_S3_ENDPOINT_URL=http://localhost:9000
 | 
			
		||||
export MLFLOW_TRACKING_URI=http://localhost:5000
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
You can load them from the .env file. But i recommend putting it in the .bashrc as below
 | 
			
		||||
```
 | 
			
		||||
AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
 | 
			
		||||
AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
 | 
			
		||||
AWS_REGION=us-east-1
 | 
			
		||||
AWS_BUCKET_NAME=mlflow
 | 
			
		||||
MYSQL_DATABASE=mlflow
 | 
			
		||||
MYSQL_USER=mlflow_user
 | 
			
		||||
MYSQL_PASSWORD=mlflow_password
 | 
			
		||||
MYSQL_ROOT_PASSWORD=toor
 | 
			
		||||
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000
 | 
			
		||||
MLFLOW_TRACKING_URI=http://localhost:5000
 | 
			
		||||
```
 | 
			
		||||
Then run
 | 
			
		||||
```shell
 | 
			
		||||
source .env
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
or add them as `export X=Y` to the .bashrc file and then run
 | 
			
		||||
 | 
			
		||||
```shell
 | 
			
		||||
source ~/.bashrc
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
or paste it into your .bashrc file and then run `source ~/.bashrc`
 | 
			
		||||
 | 
			
		||||
6. Test the pipeline with below command with conda. If you dont have conda installed run with `--no-conda`
 | 
			
		||||
 | 
			
		||||
```shell
 | 
			
		||||
mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Optionally you can run 
 | 
			
		||||
```shell
 | 
			
		||||
# or
 | 
			
		||||
python ./quickstart/mlflow_tracking.py
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
7. (Optional) If you are constantly switching your environment you can use this environment variable syntax
 | 
			
		||||
7. *(Optional)* If you are constantly switching your environment you can use this environment variable syntax
 | 
			
		||||
 | 
			
		||||
```shell
 | 
			
		||||
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user