3.1 KiB
MLFlow Docker Setup 
If you want to boot up mlflow project with one-liner - this repo is for you.
The only requirement is docker installed on your system and we are going to use Bash on linux/windows.
Step by step guide
-
Configure
.envfile for your choice. You can put there anything you like, it will be used for our services configuration -
Run the Infrastructure by this one line:
$ docker-compose up -d
Creating network "mlflow-basis_A" with driver "bridge"
Creating mlflow_db ... done
Creating tracker_mlflow ... done
Creating aws-s3 ... done
- Create mlflow bucket. You can do it either using AWS CLI or Python Api. You dont need an AWS subscription
AWS CLI
- Install AWS cli Yes, i know that you dont have an Amazon Web Services Subscription - dont worry! It wont be needed!
- Configure AWS CLI - enter the same credentials from the
.envfile
aws configure
AWS Access Key ID [****************123]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [****************123]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [us-west-2]: us-east-1
Default output format [json]:
- Run
aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow
Python API
- Install Minio
pip install Minio
- Run this to create a bucket
from minio import Minio
from minio.error import ResponseError
s3Client = Minio(
'localhost:9000',
access_key='<YOUR_AWS_ACCESSS_ID>', # copy from .env file
secret_key='<YOUR_AWS_SECRET_ACCESS_KEY>', # copy from .env file
secure=False
)
s3Client.make_bucket('mlflow')
-
Open up http://localhost:5000 for MlFlow, and http://localhost:9000/minio/mlflow/ for S3 bucket (you artifacts) with credentials from
.envfile -
Configure your client-side
For running mlflow files you AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables present on the client-side.
Also, you will need to specify the address of your S3 server (minio) and mlflow tracking server. For that, run following script
export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export MLFLOW_S3_ENDPOINT_URL=http://localhost:9000
export MLFLOW_TRACKING_URI=http://localhost:5000
or paste it into your .bashrc file and then run source ~/.bashrc
- Test the pipeline with below command with conda. If you dont have conda installed run with
--no-conda
mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
# or
python ./quickstart/mlflow_tracking.py
- (Optional) If you are constantly switching your environment you can use this environment variable syntax
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5