mirror of
https://github.com/Toumash/mlflow-docker
synced 2025-11-04 23:29:19 +01:00
Compare commits
3 Commits
Toumash/is
...
pr/simplif
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e9030c867d | ||
|
|
1e92560fb5 | ||
|
|
289842717b |
@@ -28,7 +28,7 @@
|
||||
|
||||
1. Configure your client-side
|
||||
|
||||
For running mlflow files you need various environment variables set on the client side. To generate them user the convienience script `./bashrc_install.sh`, which installs it on your system or `./bashrc_generate.sh`, which just displays the config to copy & paste.
|
||||
For running mlflow files you need various environment variables set on the client side. To generate them use the convienience script `./bashrc_install.sh`, which installs it on your system or `./bashrc_generate.sh`, which just displays the config to copy & paste.
|
||||
|
||||
> $ ./bashrc_install.sh
|
||||
> [ OK ] Successfully installed environment variables into your .bashrc!
|
||||
|
||||
@@ -31,12 +31,9 @@ services:
|
||||
networks:
|
||||
- internal
|
||||
mlflow:
|
||||
image: ubuntu/mlflow:2.1.1_1.0-22.04
|
||||
container_name: tracker_mlflow
|
||||
image: tracker_ml
|
||||
restart: unless-stopped
|
||||
build:
|
||||
context: ./mlflow
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- "5000:5000"
|
||||
environment:
|
||||
@@ -70,6 +67,25 @@ services:
|
||||
command: tcp db:3306 -t 90s -i 250ms
|
||||
networks:
|
||||
- internal
|
||||
run_test_experiment:
|
||||
build:
|
||||
context: ./test_experiment
|
||||
dockerfile: Dockerfile
|
||||
depends_on:
|
||||
- "mlflow"
|
||||
environment:
|
||||
- AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
|
||||
- AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY}
|
||||
- AWS_DEFAULT_REGION=${AWS_REGION}
|
||||
- MLFLOW_S3_ENDPOINT_URL=http://s3:9000
|
||||
- MLFLOW_TRACKING_URI=http://mlflow:5000
|
||||
entrypoint: >
|
||||
/bin/sh -c "
|
||||
python3 mlflow_tracking.py;
|
||||
exit 0;
|
||||
"
|
||||
networks:
|
||||
- internal
|
||||
networks:
|
||||
internal:
|
||||
public:
|
||||
|
||||
@@ -1,22 +1,22 @@
|
||||
import os
|
||||
from random import random, randint
|
||||
|
||||
from mlflow import mlflow,log_metric, log_param, log_artifacts
|
||||
import mlflow
|
||||
|
||||
if __name__ == "__main__":
|
||||
with mlflow.start_run() as run:
|
||||
mlflow.set_tracking_uri('http://localhost:5000')
|
||||
print("Running mlflow_tracking.py")
|
||||
|
||||
log_param("param1", randint(0, 100))
|
||||
mlflow.log_param("param1", randint(0, 100))
|
||||
|
||||
log_metric("foo", random())
|
||||
log_metric("foo", random() + 1)
|
||||
log_metric("foo", random() + 2)
|
||||
mlflow.log_metric("foo", random())
|
||||
mlflow.log_metric("foo", random() + 1)
|
||||
mlflow.log_metric("foo", random() + 2)
|
||||
|
||||
if not os.path.exists("outputs"):
|
||||
os.makedirs("outputs")
|
||||
with open("outputs/test.txt", "w") as f:
|
||||
f.write("hello world!")
|
||||
|
||||
log_artifacts("outputs")
|
||||
mlflow.log_artifacts("outputs")
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
FROM continuumio/miniconda3:latest
|
||||
|
||||
RUN pip install mlflow boto3 pymysql
|
||||
RUN pip install mlflow boto3
|
||||
|
||||
ADD . /app
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
22
test_experiment/mlflow_tracking.py
Normal file
22
test_experiment/mlflow_tracking.py
Normal file
@@ -0,0 +1,22 @@
|
||||
import os
|
||||
from random import random, randint
|
||||
|
||||
import mlflow
|
||||
|
||||
if __name__ == "__main__":
|
||||
with mlflow.start_run() as run:
|
||||
mlflow.set_tracking_uri('http://mlflow:5000')
|
||||
print("Running mlflow_tracking.py")
|
||||
|
||||
mlflow.log_param("param1", randint(0, 100))
|
||||
|
||||
mlflow.log_metric("foo", random())
|
||||
mlflow.log_metric("foo", random() + 1)
|
||||
mlflow.log_metric("foo", random() + 2)
|
||||
|
||||
if not os.path.exists("outputs"):
|
||||
os.makedirs("outputs")
|
||||
with open("outputs/test.txt", "w") as f:
|
||||
f.write("hello world!")
|
||||
|
||||
mlflow.log_artifacts("outputs")
|
||||
Reference in New Issue
Block a user