3 Commits

Author SHA1 Message Date
Tomasz Dłuski
e9030c867d feat: add built-in run_test_experiment job to test the mlflow server internally so its super easy to test if it actually works e2e 2023-11-05 21:15:59 +01:00
Tomasz Dłuski
1e92560fb5 feat: change custom image to standard ubuntu/mlflow 2023-11-05 20:26:26 +01:00
Tomasz Dłuski
289842717b Merge pull request #20 from Toumash/Toumash/issue19
feature: dont use wait-for-it which is newline characted dependant and causes problem on windows closes #17
2022-11-02 23:48:05 +01:00
5 changed files with 51 additions and 14 deletions

View File

@@ -28,7 +28,7 @@
1. Configure your client-side
For running mlflow files you need various environment variables set on the client side. To generate them user the convienience script `./bashrc_install.sh`, which installs it on your system or `./bashrc_generate.sh`, which just displays the config to copy & paste.
For running mlflow files you need various environment variables set on the client side. To generate them use the convienience script `./bashrc_install.sh`, which installs it on your system or `./bashrc_generate.sh`, which just displays the config to copy & paste.
> $ ./bashrc_install.sh
> [ OK ] Successfully installed environment variables into your .bashrc!

View File

@@ -31,12 +31,9 @@ services:
networks:
- internal
mlflow:
image: ubuntu/mlflow:2.1.1_1.0-22.04
container_name: tracker_mlflow
image: tracker_ml
restart: unless-stopped
build:
context: ./mlflow
dockerfile: Dockerfile
ports:
- "5000:5000"
environment:
@@ -70,6 +67,25 @@ services:
command: tcp db:3306 -t 90s -i 250ms
networks:
- internal
run_test_experiment:
build:
context: ./test_experiment
dockerfile: Dockerfile
depends_on:
- "mlflow"
environment:
- AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
- AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY}
- AWS_DEFAULT_REGION=${AWS_REGION}
- MLFLOW_S3_ENDPOINT_URL=http://s3:9000
- MLFLOW_TRACKING_URI=http://mlflow:5000
entrypoint: >
/bin/sh -c "
python3 mlflow_tracking.py;
exit 0;
"
networks:
- internal
networks:
internal:
public:

View File

@@ -1,22 +1,22 @@
import os
from random import random, randint
from mlflow import mlflow,log_metric, log_param, log_artifacts
import mlflow
if __name__ == "__main__":
with mlflow.start_run() as run:
mlflow.set_tracking_uri('http://localhost:5000')
print("Running mlflow_tracking.py")
log_param("param1", randint(0, 100))
mlflow.log_param("param1", randint(0, 100))
log_metric("foo", random())
log_metric("foo", random() + 1)
log_metric("foo", random() + 2)
mlflow.log_metric("foo", random())
mlflow.log_metric("foo", random() + 1)
mlflow.log_metric("foo", random() + 2)
if not os.path.exists("outputs"):
os.makedirs("outputs")
with open("outputs/test.txt", "w") as f:
f.write("hello world!")
log_artifacts("outputs")
mlflow.log_artifacts("outputs")

View File

@@ -1,7 +1,6 @@
FROM continuumio/miniconda3:latest
RUN pip install mlflow boto3 pymysql
RUN pip install mlflow boto3
ADD . /app
WORKDIR /app
COPY . .

View File

@@ -0,0 +1,22 @@
import os
from random import random, randint
import mlflow
if __name__ == "__main__":
with mlflow.start_run() as run:
mlflow.set_tracking_uri('http://mlflow:5000')
print("Running mlflow_tracking.py")
mlflow.log_param("param1", randint(0, 100))
mlflow.log_metric("foo", random())
mlflow.log_metric("foo", random() + 1)
mlflow.log_metric("foo", random() + 2)
if not os.path.exists("outputs"):
os.makedirs("outputs")
with open("outputs/test.txt", "w") as f:
f.write("hello world!")
mlflow.log_artifacts("outputs")