Files
mlflow-docker-minio/README.md
Tomasz Dłuski 670e449369 Update README.md
2020-08-24 16:24:52 +02:00

94 lines
3.1 KiB
Markdown

# MLFlow Docker Setup [![Actions Status](https://github.com/Toumash/mlflow-docker/workflows/VerifyDockerCompose/badge.svg)](https://github.com/Toumash/mlflow-docker/actions)
If you want to boot up mlflow project with one-liner - this repo is for you.
The only requirement is docker installed on your system and we are going to use Bash on linux/windows.
## Step by step guide
1. Configure `.env` file for your choice. You can put there anything you like, it will be used for our services configuration
2. Run the Infrastructure by this one line:
```shell
$ docker-compose up -d
Creating network "mlflow-basis_A" with driver "bridge"
Creating mlflow_db ... done
Creating tracker_mlflow ... done
Creating aws-s3 ... done
```
3. Create mlflow bucket. You can do it **either using AWS CLI or Python Api**. **You dont need an AWS subscription**
<details><summary>AWS CLI</summary>
1. [Install AWS cli](https://aws.amazon.com/cli/) **Yes, i know that you dont have an Amazon Web Services Subscription - dont worry! It wont be needed!**
2. Configure AWS CLI - enter the same credentials from the `.env` file
```shell
aws configure
```
> AWS Access Key ID [****************123]: AKIAIOSFODNN7EXAMPLE
> AWS Secret Access Key [****************123]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
> Default region name [us-west-2]: us-east-1
> Default output format [json]: <ENTER>
3. Run
```shell
aws --endpoint-url=http://localhost:9000 s3 mb s3://mlflow
```
</details>
<details><summary>Python API</summary>
1. Install Minio
```shell
pip install Minio
```
2. Run this to create a bucket
```python
from minio import Minio
from minio.error import ResponseError
s3Client = Minio(
'localhost:9000',
access_key='<YOUR_AWS_ACCESSS_ID>', # copy from .env file
secret_key='<YOUR_AWS_SECRET_ACCESS_KEY>', # copy from .env file
secure=False
)
s3Client.make_bucket('mlflow')
```
</details>
---
4. Open up http://localhost:5000 for MlFlow, and http://localhost:9000/minio/mlflow/ for S3 bucket (you artifacts) with credentials from `.env` file
5. Configure your client-side
For running mlflow files you AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables present on the client-side.
Also, you will need to specify the address of your S3 server (minio) and mlflow tracking server. For that, run following script
```shell
export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export MLFLOW_S3_ENDPOINT_URL=http://localhost:9000
export MLFLOW_TRACKING_URI=http://localhost:5000
```
or paste it into your .bashrc file and then run `source ~/.bashrc`
6. Test the pipeline with below command with conda. If you dont have conda installed run with `--no-conda`
```shell
mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
# or
python ./quickstart/mlflow_tracking.py
```
7. *(Optional)* If you are constantly switching your environment you can use this environment variable syntax
```shell
MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 MLFLOW_TRACKING_URI=http://localhost:5000 mlflow run git@github.com:databricks/mlflow-example.git -P alpha=0.5
```